
UCRL-CONF-208668

Parallel Monte Carlo Particle Transport
and the Quality of Random Number
Generators: How Good is Good Enough?

R. J. Procassini, B. R. Beck

December 17, 2004

Monte Carlo 2005
Chattanooga, TN, United States
April 17, 2005 through April 21, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

The Monte Carlo Method: Versatility Unbounded In A Dynamic Computing World
Chattanooga, Tennessee, April 17–21, 2005, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005)

PARALLEL MONTE CARLO PARTICLE TRANSPORT AND
THE QUALITY OF RANDOM NUMBER GENERATORS:

HOW GOOD IS GOOD ENOUGH?

Richard Procassini and Bret Beck
Lawrence Livermore National Laboratory

Mail Stop L-95, P. O. Box 808
Livermore, CA 94551

spike@llnl.gov; bbeck@llnl.gov

ABSTRACT

It might be assumed that use of a “high-quality” random number generator (RNG),
producing a sequence of “pseudo random” numbers with a “long” repetition period, is crucial for
producing unbiased results in Monte Carlo particle transport simulations. While several theoretical
and empirical tests have been devised to check the quality (randomness and period) of an RNG, for
many applications it is not clear what level of RNG quality is required to produce unbiased results.

This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport
simulations in order to determine how “good” is “good enough”. This study employs the
MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of
pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines
the usage of random numbers during parallel MERCURY simulations, and then describes the
source and criticality transport simulations which comprise the empirical basis of this study. A
series of calculations for each test problem in which the quality of the RNG (period of the LCG) is
varied provides the empirical basis for determining the minimum repetition period which may be
employed without producing a bias in the mean integrated results.

Key Words: Monte Carlo, particle transport, parallel computation, random numbers

1 INTRODUCTION

Recent advances in the speed of parallel computers, as well as the development of parallel
algorithms designed to harness the power of these systems, have prompted discussion regarding
the “quality” of the pseudo-random numbers required in order to produce accurate, unbiased re-
sults in Monte Carlo transport simulations. Several theoretical and empirical tests have been de-
vised which are designed to test the quality of random number generator (RNG) algorithms [1].
However, such tests are not sufficient to determine the level of RNG quality that is required to
produce unbiased results. In general, each application must diagnose the results of simulations
in order to determine if the quality of the RNG being employed is sufficient.

One might assume that use of an RNG which produces a stream of pseudo-random numbers
with a “long” repetition period is crucial in order to produce unbiased results. For some Monte
Carlo applications, such as numerical integration, it is extremely important to avoid the reuse of
pseudo-random numbers. These types of applications employ RNGs to randomly sample a small
number of distributions, usually one. As such, it is important to avoid correlations in the sampled
quantity.

In contrast, Monte Carlo transport applications use RNGs to randomly sample from several
distributions, which may or may not be correlated: the spatial, energy or angular distributions of

Procassini and Beck

sources, the distance to collision, the isotope with which the particle interacts, the resulting reac-
tion, the energy and angle of any secondary particles, etc. While it desirable to avoid reuse of
pseudo-random numbers in Monte Carlo transport simulations, it is not clear, a priori, whether
such reuse will produce a bias in the results. For example, a given pseudo-random number may
be used to sample the energy of one particle which is created in an external source, and the next
use of that pseudo-random number may occur many time steps and particles later during a colli-
sion sampling event.

The non-linear nature of particle transport, in concert with the multiple forms of distribution
sampling encountered in Monte Carlo particle transport, may be beneficial in that the RNG peri-
od required for unbiased simulations may be shorter that that required for single sample applica-
tions such as numerical integration. In this paper, we explore the issue of RNG quality in the
context of parallel, Monte Carlo transport simulations in order to determine how “good” is “good
enough”. This study employs the MERCURY Monte Carlo code [2], which incorporates the
CNPRNG library [3] for the generation of pseudo-random numbers. A set of four source and
criticality transport problems form the basis for comparing the quality of LCG RNGs with
varying period.

The paper is organized as follows. The parallel programming model implemented in MER-
CURY is presented in Section 2, and the use of pseudo-random numbers in parallel MERCURY
calculations is described in Section 3. Section 4 describes the four test problems used for this
study, while Section 5 presents the methodology used for this study along with results for a series
calculations of each problem in which the period of the RNG was varied. Finally, the conclu-
sions of this study and recommendations for future work are presented in Section 6.

2 THE MERCURY PARALLEL PROGRAMMING MODEL

MERCURY is a modern, Monte Carlo transport code which has been developed over the last
six years at the Lawrence Livermore National Laboratory (LLNL). The intent is for MERCURY
to replace the legacy codes TART and COG as the next-generation radiation transport tool at
LLNL. The design and development of MERCURY has been driven by the requirement that the
code be able to operate on the wide variety of parallel computing platforms that are provided by
the Advanced Simulation and Computing (ASC) program. This has led to the adoption of a three
pronged approach to parallelism within MERCURY.

The first form of parallelism supported in MERCURY is Domain Decomposition, in which
the problem geometry is spatially partitioned across multiple processors. This form of spatial
parallelism allows MERCURY to transport particles through geometries which contain a large
number of cells, such as calculations requiring high-resolution, multidimensional meshes. Figure
1 shows the 4-way spatial partitioning of a two-dimensional, block-unstructured mesh. The do-
mains are color coded according to processor number. As particles track to a facet which lies on
the boundary of a domain, it must be sent the the adjacent domain before it can continued its tra-
jectory. This transfer of particles between adjacent domains is accomplished via point-to-point
communication of particle buffers using message passing techniques on distributed-memory par-
allel computers, as illustrated by the red arrows in Figure 1.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 2/17

Parallel Monte Carlo Transport and the Quality of Random Number Generators

The second form of parallelism employed in MERCURY is Domain Replication. In this
method, particles are distributed across multiple copies of the problem geometry, each of which
is assigned to a specific processor. This form of particle parallelism allows MERCURY to effi-
ciently transport large numbers of particles. Figure 2 shows the 2-way replication of the same
two-dimensional, block-unstructured mesh discussed above. Each copy of the geometry (mesh)
is color coded according to processor number. Once the calculation is complete on each copy of
the geometry (domain), the partial results from each copy of the domain must be summed in or-
der to produce the complete result. This transfer of data is accomplished via collective commu-
nication between the multiple copies of the domain using message passing techniques on dis-
tributed-memory computers, as indicated by the blue, curved arrows in Figure 2.

The final form of parallelism supported by MERCURY is Task Decomposition. This method
decomposes the main particle loop by assigning individual particles, or tasks, to threads on a
shared-memory parallel computer. This represents another form of particle parallelism.

3 USE OF RANDOM NUMBERS IN PARALLEL MERCURY CALCULATIONS

The complex, multifaceted parallel programming model that has been developed for MER-
CURY allows for a wide variety of operating modes, from serial calculations to parallel calcula-
tions using any of the three forms of parallelism individually or in combination. A major design
requirement is that the code be capable of reproducing the same result, regardless of the chosen
mode of operation.

In an attempt to guarantee such reproducibility, a hierarchy of random number seeds (states)
has been implemented in MERCURY. This approach makes use of the spawning feature of the
CNPRNG library. At the top of this hierarchy is the Simulation Seed, which represents the pri-

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 3/17

Figure 1. Spatial parallelism in MERCURY is achieved via domain decomposition
(spatial partitioning) of the problem geometry. Particles must be transferred to adja-
cent domains when they reach a domain boundary. The communication of particle
buffers between adjacent spatial domains is indicated via the red arrows.

Procassini and Beck

mordial seed from which all other seeds are spawned. This 64-bit seed or state is initialized via
the bitwise combination of two 32-bit, user specified random number seed fragments.

The Simulation Seed is then used to spawn two seeds at the next level in the hierarchy: the
Source Seed and the Spatial Domain Seed(s). The former is used to spawn the seeds for all parti-
cles that are generated in external sources, while the latter is (are)defined for each spatial domain
in the problem, and is (are) used to (a) spawn the seeds of all particles generated in cell-based,
physics sources (such as a fusion source) and (b) produce pseudo-random numbers which are
required for a specific cell and/or domain.

At the lowest level of the hierarchy is the Particle Seed. Once spawned from the Source
Seed or a Spatial Domain Seed, the Particle Seed controls the behavior of the particle. The Parti-
cle Seed is an inherent attribute of the particle, along with other attributes such as spatial coordi-
nates, velocity components, kinetic energy, weight, time to census, cell, facet, etc. As a result,
the particle carries its random number seed along with it as it tracks through the problem geome-
try and is communicated between adjacent spatial domains. This approach to parallelism and
random numbers is different from others in which only the processors are assigned uniques ran-
dom number seeds.

Ideally, the random number seed should be a small fraction of the overall storage cost of
each particle. In MERCURY, the storage required for all of the particle attributes except the ran-
dom number seed amounts to 120 bytes: ten 64-bit floating point (80 bytes), one 64-bit integer (8
bytes) and eight 32-bit integers (32 bytes). The state of a pseudo-random number stream in the
LLNL-developed CNPRNG library is defined by a single 64-bit integer (8 bytes). This increases
the cost of storing each particle by only 6.67%. The compact nature of this seed is the reason that
this RNG library was chosen over others, such as the SPRNG library [4], which can require more

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 4/17

Figure 2. Particle parallelism in MERCURY is achieved via domain replication (multi-
ple copies) of the problem geometry. The particle workload is distributed across the
copies of the domain. The summing communication of partial results is indicated by the
blue, curved arrows.

Parallel Monte Carlo Transport and the Quality of Random Number Generators

than 100 bytes to define the state of each random number stream. Compact storage of the ran-
dom number state is crucial for applications using per particle seeds.

This hierarchical approach to the definition of random number seeds has allowed MER-
CURY to achieve reproducibility of parallel calculations in most cases. The only case where
such calculations are not reproducible is when domain decomposition involving more than two
spatial domains is used. In this case, there exists the possibility of a race condition between pro-
cessors on many types of parallel computers that could change the order in which results are ac-
cumulated.

Consider the case of three spatial domains assigned to three processors. Assume that each
domain is adjacent to the remaining two domains. In this case Processor A will receive particle
buffers from Processors B and C. The point-to-point data transfer between processors is coded
using asynchronous, non-blocking communications routines. This method involves posting re-
ceive operations prior to send operations, and periodically checking to see if any messages have
been received from an adjacent processor.

 During one run, it is possible that a message from Processor B will arrive prior to a mes-
sage from Processor C, and Processor A will check for messages from its neighbors in the inter-
im. A second run may reverse the order of arrival of the messages from Processors B and C.
While the particles carry their random number seeds with them as they are transferred between
processors, and as such experience the same random sampling of distributions, the results or tal-
lies of the calculation will be accumulated in a different order. This can lead to a different set of
results for the two runs since finite-precision, floating point mathematics (the type used by all
computer systems) is not associative.

 The possible solutions for this problem require either (a) temporarily accumulating results
as 64-bit integers or (b) conversion of the communications to use a synchronous, blocking
methodology. The former solution requires significant recoding to achieve, while the latter could
result in a potential deadlock that would stall all future computations. Therefore, neither option
is very appealing. The good news is that while race-condition induced differences are possible,
they appear only infrequently, and the magnitude of the observed differences is within the statisti-
cal variability of the results as set by the number of particle histories.

4 DESCRIPTION OF THE SOURCE AND CRITICALITY TEST PROBLEMS

Four problems have been chosen for this study of the effect of RNG period (quality) on the
results produced by Monte Carlo calculations. This set includes two shielding calculations and
two criticality calculations. These test problems have been derived from real world applications
that are of interest to many in the nuclear engineering and transport communities.

4.1 Problem 1: A Spherical, Neutron Shielding Experiment
The first source problem used for this study is a spherical representation of one configuration

of a fusion-neutron shielding experiment that was performed at Oak Ridge National Laboratory
(ORNL) in 1980 [5]. This problem incorporates only the shield materials from configuration 7
of the ORNL experiment: 35.56 cm of stainless steel, followed by two sets of alternating layers
of borated polyethylene and stainless steel, each of which is 5.08 cm thick (see Figure 3). Mo-
noenergetic 14.1 MeV neutrons are isotropically injected at the center of the sphere during a 2
 sec flat top pulse. The problem is run out to a simulation time of 200 sec.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 5/17

Procassini and Beck

For this test problem the study metrics include the following cumulative particles tallies: the
number of particle collisions N coll , as well as the number of particles leaked N leak from the
system and the number of particles absorbed N abs , captured (terminal absorption) N cap , and
produced N prod within the system. This problem was run in time-dependent transport mode.

4.2 Problem 2: A Fusion-Neutron Shielding Test Facility
The second source problem is a complete mock-up of the ORNL fusion-neutron shielding

experiment discussed in the previous section. This problem includes all structural materials,
such as the concrete floor, ceiling and walls, as well as the concrete shield box, iron pipe housing
the beam line, stainless-steel thermal shield and the 30.48 cm thick stainless steel shield (ORNL
configuration 3). The geometry for this test problem is shown in Figure 4. A parallel-ray disk
source of monoenergetic 14.5 MeV neutrons are injected at the location of the tritiated titanium
target during a 10 sec flat top pulse. The problem is run for for a total of 100 sec.

The study metrics for this test problem include the cumulative particles tallies used for Prob-
lem 1, as well as the counts of particles passing through two regions of the problem during the
time interval 90 - 100 sec. These regions are (a) a 5 cm radius spherical “detector”, filled with
air, which is located 154.5 cm downstream of the source target and (b) a 5.08 cm thick planar
thermal shield, made of stainless steel, which is located 204.5 cm downstream of the source tar-
get. This problem was also run in time-dependent transport mode.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 6/17

Figure 3. The geometry for Problem 1: A spherical, neutron shielding experiment.

Parallel Monte Carlo Transport and the Quality of Random Number Generators

4.3 Problem 3: A Cylindrical, Highly-Enriched Uranium Critical Assembly
The first criticality problem used in this study is a cylindrical critical assembly consisting of

alternating discs of highly enriched uranium (HEU) and beryllium oxide. The specifications for
this system were obtained from the International Handbook of Evaluated Criticality Safety
Benchmark Experiments (“The Handbook”) [6], which gives this critical assembly the moniker
HEU-MET-FAST-017-001 (HEU metal, fast spectrum, assembly 17, case 1). The geometry of
this test problem is illustrated in Figure 5.

The study metrics this for criticality test problem include the k eff eigenvalue and the neutron
removal lifetime rem . This problem was run using a static k eff eigenvalue method, in which
particles are tracked for some number of generations. Each generation ends when all the parti-
cles that started the generation have either been absorbed of leaked from the system. A certain
number of generations are run in a transient phase to allow the system to approach equilibrium,
followed by a second set of equilibrium phase generations over which the results are averaged.

4.4 Problem 4: A Spherical, Plutonium Supercritical System
The second criticality problem is a modified version of a spherical, plutonium critical assem-

bly taken from “The Handbook” [6]. The actual system consists of a fissile core (a 5.0419 cm
sphere of d-phase plutonium) surrounded by a reflector (a 3.6881 cm thick spherical shell of
beryllium oxide). This system is given the moniker PU-MET-FAST-018-001 (plutonium metal,
fast spectrum, assembly 18, case 1). The modified version of this systems adds a second spheri-
cal shell of reflecting material (a 5.0 cm thick spherical shell of beryllium oxide) on the outside

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 7/17

Figure 4. The geometry for Problem 2: a fusion-neutron shielding test facility.

Procassini and Beck

of PU-MET-FAST-018-001 to produce a gedanken supercritical system with an eigenvalue
(the logarithmic growth rate of the neutron population) of ≃ 6.6 generations/ sec (see
Figure 6 for a graphical representation of this system).

For this test problem the study metrics include those used in Problem 3, along with the
eigenvalue. This problem was run using a pseudo-dynamic eigenvalue method, in which par-
ticles are tracked through a fixed geometry and medium for some number of time steps (cycles).
A certain number of cycles are run in a transient phase to allow the system to approach equilibri-
um, followed by a second set of equilibrium phase cycles over which the results are averaged.

5 METHODOLOGY AND RESULTS

This aim of this study is to determine the length of the RNG period required to prevent
correlations in the pseudo-random number streams, and thus, biases in the metric result that were
discussed in the previous section. Each of the four problems described above are run with
several RNGs of varying period. For each pairing of problem and RNG period, an ensemble of
25 calculations is run where the initial random number seed is changed for each calculation, in
order to determine the mean and standard deviations of each metric result.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 8/17

Figure 5. The geometry of Problem 3: a cylindrical, highly-enriched uranium critical
assembly.

Parallel Monte Carlo Transport and the Quality of Random Number Generators

The CNPRNG library [3] that is used within MERCURY is a collection of Linear Congruen-
tial Generators (LCGs) of the form:

xn1 = a⋅xn b mod m (1)

where xn and xn1 are successive pseudo-random numbers in the sequence, a and b are con-
stants, and m is the modulus, or period, of the RNG. The LCGs provided by the CNPRNG li-
brary have moduli that are either prime numbers or a power of 2:

 m = 2 p (2)

For this portion of the study, only power-of-2 modulus LCGs are used for the following set of
powers p = 4, 8, 12, 16, 24, 32, 48, and 64 . The modulus (period) of each of these LCGs,
which is shown in Table I, range from a low of 16 p = 4 to a high of 1.8×1019 p = 64 .

One of the primary motivation for performing this study was to determine if MERCURY re-
quired an RNG with a longer period than that currently supported by the CNPRNG library. If
this turns out to be the case, modification of both the RNG library and the Monte Carlo transport
code would be required. In particular, it was proposed that a 128-bit version of the power-of-2
LCG could be coded within the CNPRNG library. The resulting pseudo-random number stream
would have a period of 3.4×1038 , which is long enough to avoid repetitions for 1020 years on
the new BlueGene/L computer at LLNL. Since there are currently no computer systems that sup-
port native 128-bit floating point mathematics, these modifications would require that each ran-
dom number seed be stored as two 64-bit floating point integers, and would also require a new
set of function interfaces to permit passing these 2 integers between the code and the RNG.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 9/17

Figure 6. The geometry of Problem 4: a spherical, plutonium supercritical system.

Procassini and Beck

Each of the calculations performed for this study are run with 10 million particle histories:
10 million particles are injected into the system in each of the source problems, while 25000 par-
ticles are run for 400 “settle cycles” (generations or time steps) in each of the criticality prob-
lems. This number of histories was chosen a reasonable balance between accuracy and run time.
All of the calculations were run on 16 processors in the form of eight 2-way SMP nodes on a par-
allel Linux cluster. These parallel calculations employed only Domain Replication which pro-
vides 16-way particle parallelism.

5.1 Problem 1 Results
The metric results from the calculations of the Problem 1 are plotted as a function of RNG

period m = 2 p in Figure 7. In the following figures, the red stars represents the ensemble
average of 25 calculations, each of which was initialized with a unique set of two 32-bit random
number seed fragments. The ensemble standard deviation of each point is indicated by the blue
error bars. Note that for Problem 1, the error bars are much smaller than the size of the marker.

The figures clearly indicate that the variation of the average results with p is negligible for
16 ≤ p ≤ 64 , but the results can deviate substantially for p ≤ 12 m ≤ 4.1×103 . Once the
average results start to deviate as p is made smaller, the trend is not always clear. In some cases
the results increase with decreasing p (Figures 7a, 7b and 7c), which the opposite effect can also
be found (Figures 7e and 7f). Figure 7 also shows that the deviation from the converged results
is not monotonic as p is decreased.

At first glance, one may be surprised to learn that an RNG period of only m = 6.5×104 is
sufficient for this problem, especially when one considers that more than 915 million particle col-
lisions occurred for during these calculations. However, this corresponds to an average of only
91.5 collisions per particle. When one takes into account that there are many random numbers
used per collisions, and many particle segments per collision (each of which uses at least one ran-
dom number), it is not surprising that the results begin to deviate from the converged values for
RNG periods m ≤ 4.1×103 , or about 45 times the average number of collisions per particle.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 10/17

Table I. LCG powers and moduli (periods)

p LCG Modulus (Period)

4 16 (1.6x101)

8 256 (2.6x102)

12 4,096 (4.1x103)

16 65,536 (6.6x104)

24 16,777,216 (1.7x107)

32 4,294,967,296 (4.3x109)

48 281,474,976,710,656 (2.8x1014)

64 18,446,744,073,709,551,616 (1.8x1019)

Parallel Monte Carlo Transport and the Quality of Random Number Generators

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 11/17

Figure 7. Metric results as a function of RNG period m = 2p for Problem 1: (a) number of collisions, (b)
number of absorbed particles, (c) number of captured particles, (d) number of produced particles, (e) and (f)
number of leaked particles (different scales).

a

c

e

b

d

f

Procassini and Beck

This finding illustrates the power of per-particle random number seeds: each particle can un-
dergo a large number m of randomly-sampled events before repetitions of pseudo-random
numbers will occur, leading to possible correlations in histories and biases in results. Consider
the alternative technique of using independent random number streams per processor. For Prob-
lem 1, there is an average of 625 thousand particles injected into the system on each processor.
This means that the average number of collisions per processor is approximately 57.2 million.
Based upon the discussion in the previous paragraph, one might assume that an RNG period on
the order of 2 billion p ≈ 31 would be required to prevent repetition of random numbers when
the per-processor random number stream method is used.

5.2 Problem 2 Results
The variation of the metric results for Problem 2 with RNG period are shown in Figure 8.

Once again, the blue error bars are smaller than the size of the marker, except for Figures 8g and
8h, which show the number of particles passing through the detector and thermal shield regions
for times between 90 - 100 sec.

For Problem 2, the variation of the average results with p is negligible for 24 ≤ p ≤ 64 ,
but the results can deviate significantly for p ≤ 16 m ≤ 6.6×104 . As was the case for Prob-
lem 1, the variation of the average results with RNG period for p 24 is neither in the same di-
rection nor is it monotonic.

Problem 2 is more complicated than Problem 1, both in terms of the number of zones (about
170 versus 5) and geometrically (see Figures 3 and 4). As a result, it is not unexpected that the
period required to prevent biased results is larger for Problem 2 than it is for Problem 1, even
though the cumulative number of collisions in both problems is comparable (915 million for
Problem 1 and 972 million for Problem 2).

5.3 Problem 3 Results
The metric results from the calculations of the Problem 3 are plotted as a function of RNG

period in Figure 9. The variation of the average the k eff eigenvalue with p is shown to be com-
parable to the error bars for any one p value for 16 ≤ p ≤ 64 , and the results deviate from the
converged eigenvalue for p ≤ 12 m ≤ 4.1×103 (see Figures 9a and 9b). Similarly, the neu-
tron lifetime rem results are consistent for 24 ≤ p ≤ 64 , but deviate for p ≤ 16 (Figure 9c).
The average k eff eigenvalue falls off monotonically for p ≤ 12 , but the deviation of the re-
moval lifetime is not monotonic with p . Note that k eff and rem are independent tallies from
the static k eff eigenvalue method.

5.4 Problem 4 Results
The variation of the metric results for Problem 4 with RNG period are shown in Figure 10.

The figure indicates that the average results are converged for 24 ≤ p ≤ 64 . The average re-
sults deviate significantly for p ≤ 16 m ≤ 6.6×104 , as was seen for the previous problems.
As the RNG period is decreased below m = 1.7×107 p = 24 , the and k eff eigenvalues
each increase before falling rapidly. In contrast, the removal lifetime rem results drop, then
rise rapidly before falling rapidly.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 12/17

Parallel Monte Carlo Transport and the Quality of Random Number Generators

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 13/17

Figure 8. Metric results as a function of RNG period m = 2p for Problem 2: (a) number of collisions, (b)
number of absorbed particles, (c) number of captured particles, (d) number of produced particles, (e) and (f)
number of leaked particles (different scales).

a

c

e

b

d

f

Procassini and Beck

While k eff and rem are independent tallies from the pseudo-dynamic eigenvalue meth-
od, the eigenvalue tally is related to the others via:

 = 1
rem N prod

N leak N abs
− 1= 1

rem k eff − 1 (3)

where N prod is the number of particles produced during the settle cycle, and N leak N abs is the
number of particles removed (leaked plus absorbed) during the time step. As a result, the devia-
tions from the converged values of k eff and rem compound to produce the large observed devia-
tions in .

6 SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

This paper has studied the accuracy of Monte Carlo particle transport calculations in the con-
text of a variable period (“quality”) random number generator (RNG). The code MERCURY
was used to model two source problems and two criticality problems that are of general interest
to the transport community. For each problem, a series of calculations were made by varying the
period, or modulus, of the linear congruential generator (LCG) in the range 24 ≤ m ≤ 264 . For
each of these problem-period pairs, an ensemble of 25 runs were performed by varying the initial
random number seeds. Each of these runs employed 10 million particle histories. The average
results of several tallies were then compared as a function of m in order to determine the mini-
mum RNG period necessary for unbiased results from parallel, Monte Carlo transport calcula-
tions.

While the conclusions differ slightly between the four problems, the main conclusion of this
study is that RNG periods as low as m = 216 = 65,536 are sufficient to produce unbiased results.
These results were obtained from a parallel code that utilizes per-particle random number seeds,
and should not be considered a universal guideline. In particular, a parallel transport code which

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 14/17

Figure 8 (continued): Metric results as a function of RNG period m = 2p for Problem 2: (g) number of
particles passing through the detector region, and (h) number of particles passing through the thermal shield
region.

g h

Parallel Monte Carlo Transport and the Quality of Random Number Generators

employs per-processor random number seeds may require RNG periods that are larger by the ra-
tio of the number of particles per processor. An important conclusion of this study is that the cur-
rent form of random number parallelism used within MERCURY does not require us to develop
a new RNG library that supports 128-bit LCGs.

Two areas of future research come to mind. The first involves repeating this series of calcu-
lations with the prime-modulus LCGs that are available within the CNPRNG library. The prime-
number-modulus LCGs have been shown [7] to produce streams of pseudo-random numbers
with fewer correlations in the bit patters than comparable period power-of-two-modulus LCGs.
It would be interesting to determine if the added cost of calculating random numbers with the
prime-modulus LCGs would produce superior results to those obtained in the current study.

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 15/17

Figure 9. Metric results as a function of RNG period m = 2p for Problem 3: (a) and (b) keff eigenvalue
(different scales), and (c) removal lifetime.

a

c

b

Procassini and Beck

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 16/17

Figure 10. Metric results as a function of RNG period m = 2p for Problem 4: (a) and (b) eigenvalue
(different scales), (c) and (d) keff eigenvalue (different scales), and (e) removal lifetime.

a

c

e

b

d

Parallel Monte Carlo Transport and the Quality of Random Number Generators

The second involves modifying the CNPRNG library to allow MERCURY to use random
number streams that are assigned on a per-processor basis. This technique would allow us to de-
termine the per-particle-seed approach to Monte Carlo transport is indeed superior to the per-pro-
cessor-seed approach for a given RNG period by making a third set of calculations.

7 ACKNOWLEDGMENTS

The authors would like to acknowledge discussions with and suggestions by Eugene Brooks
and Jim Rathkopf of the Lawrence Livermore National Laboratory. This work was performed
under the auspices of the U.S. Department of Energy at the UC, Lawrence Livermore National
Laboratory under Contract Number W-7405-Eng-48.

8 REFERENCES

1. J. E. Gentle, Random Number Generation and Monte Carlo Methods (Second Edition),
Springer-Verlag, New York, USA (2003).
2. R. J. Procassini and J. M. Taylor, MERCURY User Guide (Version b.6), Lawrence Livermore
National Laboratory, Report UCRL-TM-204296 (2004).
3. B. R. Beck and E. D. Brooks III, The RNG Random Number Library, Lawrence Livermore
National Laboratory, Internal Report (2000).
4. "SPRNG: Scalable Parallel Pseudo Random Number Generators Library", http://sprng.cs.fsu.
edu (2002).
5. R. T. Santoro, R. G. Alsmiller, J. M. Barnes and G. T. Chapman, "Calculation of Neutron and
Gamma Ray Spectra for Fusion Reactor Shield Design: Comparison with Experiment", Nucl.
Sci. and Eng., 78, pp. 259-272 (1981).
6. International Criticality Safety Benchmark Evaluation Program, International Handbook of
Evaluated Criticality Safety Benchmark Experiment, Nuclear Energy Agency, Report
NEA/NSC/DOC(95)03/I (2003).
7. B. R. Beck, Linear Congruential Random Number Generators with Prime Moduli, Lawrence
Livermore National Laboratory, Report UCRL-JC-145424 (2000).

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 17/17

